
Using the ODBC Function Library

1. Background
The AMPS language contains a set of functions which allow QEI Exec to exchange data with ODBC data
sources. These functions are documented in the help system, and you can obviously use them directly to write
macros. They operate at quite a low level however, so PCF has written a standard function library to simplify
the development of macros requiring ODBC. The library is shipped as a standard macro named ODBC.SRC
with QEI Exec version 3.

The document provides a number of example macros demonstrating techniques for using the ODBC functions,
and it is assumed that the reader is reasonably familiar with both the QEI Command Language and AMPS. It is
also not intended as an SQL teaching tool, although the examples should provide enough information to allow
users without detailed knowledge of SQL to create suitable macros in most cases.

2. ODBC Basics
The ODBC (Open DataBase Connectivity) standard was originally developed by Microsoft to allow applications
to connect in a consistent fashion with sources of data such as spreadsheets or databases. It has been widely
adopted by many software vendors as a means of delivering program based access to information held within
their applications.

An ODBC session consists of two components. These are the application storing the data (the Data Source) and
the application reading or writing the data (the Client). At the current time, QEI Exec is only capable of
operating as an ODBC client; that is, it can read and write data via ODBC. It is not capable of acting as a Data
Source to which other applications can connect, although this may well change in future releases.

To set up a Data Source, you need to go the Control Panel on your PC and click on the ODBC icon. If you have
more than one ODBC icon, click the one labelled "32 bit". You should see a property sheet similar to the one
shown below – the list of available data sources will depend on which applications are installed on your
machine.

To create a new Data Source, select the User DSN, System DSN or File DSN tab, select the appropriate data
source from the list, click the Add button and go through the dialogs that appear, which will be different for
each type of driver. The fundamental thing to realise is that a data source has a name associated with it – the
Data Source Name (DSN) – and also perhaps a User ID and Password. These are often required if your Data
Source is an enterprise class database such as SQL Server or Oracle.

The final point to bear in mind regarding ODBC is that all exchanges of data with the Data Source use the SQL
database query language. This is true regardless of the actual way in which the application storing the data
manages it internally – for instance, Excel does not support SQL if you use it in the normal fashion, but the
ODBC driver for Excel has to map SQL queries from ODBC clients to the appropriate internal behaviour.

3. The ODBC Library
The ODBC library consists of a number of routines that carry out the operations required in typical ODBC
sessions. These include:

• Connecting to a Data Source
• Defining Queries
• Executing Queries
• Disconnecting from a Data Source
• Managing Errors

All these routines can be called from other macros using the AMPS run command with a number of arguments,
as shown below:

run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$

The first argument is a string that specifies what function is being requested. The remaining arguments are used
to exchange data with the routine being called; their exact meaning depends on the routine itself. The table
below lists the routines in the library, the arguments required and the purpose of the routine. An asterisk next to
an argument indicates that the routine uses it to return data to the calling macro.

MODE QID HDB S1 S2 S3 ERR MSG FUNCTION
Init n/a n/a n/a n/a n/a err* msg* initialise query array
Connect n/a hdb* DSN UID PWD err* msg* connect to database
BuildQuery qid* hdb TBL COL SQS err* msg* create query in one go
InitQuery qid* hdb TBL COL SQS err* msg* create part 1 of query
ExtendQuery qid n/a n/a n/a SQS err* msg* create part n of query
CloseQuery qid n/a n/a n/a n/a err* msg* finish off query build
RunQuery qid n/a FIL QUO SEP err* msg* (re)run a query
GetRowData qid n/a RW* QUO SEP err* msg* get row of data
StopRowData qid n/a n/a n/a n/a err* msg* stop getting row data
DeleteQuery qid n/a n/a n/a n/a err* msg* delete a query
Disconnect n/a hdb n/a n/a n/a err* msg* disconnect from database

The following list describes in more detail the meaning of the various arguments as they apply to the routines
listed above:

qid Query identifier. An integer representing a query, returned by BuildQuery or InitQuery, which is used to
subsequently run or delete the query.

hdb Database connection handle. An integer representing a connection to an ODBC data source (DSN) which is
returned by Connect. It is then used to identify the database in BuildQuery, InitQuery and Disconnect.

DSN The Data Source Name associated with an ODBC data source.

UID The user id associated with the ODBC data source specified by DSN

PWD The password associated with the user id UID.

TBL The name of the database table referenced by the query.

COL The list of result columns associated with the query.

SQS The SQL query statement. This is the string used to create the query. It can be split into several parts if the overall
length is more than 255 characters.

FIL The name of a file that will contain the input data or results associated with a query.

RW A string variable that will contain the next row of data to be returned by the query.

QUO A character identifying the quote character in the file.

SEP A character identifying the field delimiter in the file.

Please also note the following points:

• There would normally never be any need to call the Init routine from a macro – this routine is called once
during system startup (SYSINIT.SRC) to initialise some data structures and should not be called again.

• The final two arguments are used to return status information to the calling macro. The first is an integer
argument which will be set to 1 if any problems occurred; the second is a string which will contain a
descriptive message relating to the error.

• The low level AMPS functions permit up to 512 simultaneous database connections, each with an
effectively unlimited number of associated queries. A query is therefore uniquely identified by the
combination of the database connection handle and the query handle. Given that this capability is likely to
far exceed the needs of most users and is a little complex, the ODBC library routines store the database and
query handles in an array and all reference to queries is simply by the array index (the qid parameter). The
maximum number of concurrent queries available is therefore limited to the size of the array; this is set to
10 in the current version of QEI Exec.

• There are two ways of constructing a query. The simplest way is to use the BuildQuery routine. An
alternative method, which is necessary when the SQL statement exceeds 256 characters in length and
cannot be stored in a single AMPS variable, is to use InitQuery, followed by as many calls to ExtendQuery
as are necessary to accommodate the statement, then CloseQuery.

4. A Simple ODBC Session
Let us now look at how one might use the ODBC functions by developing a simple macro that updates the
descriptions on a number of activities within a QEI Exec database. This will allow us to develop a basic
framework for an ODBC session that will be further expanded in later examples.

Suppose a relational database has been set up with a DSN of PROJDATA, and that no user or password is
required for access. The database contains a table called TASKS which has several columns. One column called
TID holds the Task ID which is equivalent to the Activity Name in QEI Exec, and another called OPERATION
is mapped to the Description. We will assume that the macro is run with the current database holding AIs
corresponding to the tasks in the external database.

The first step is therefore to connect to the external database:

rem establish database connection
 dsn$ = "PROJDATA"
 uid$ = ""
 pwd$ = ""
 hDB% = 0
 qry% = 0
 run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$
 if status%
 gosub ODBCError:
 endif

The routine ODBCError handles problems cleanly – we will examine its contents later. Now we have a
connection to the database, we can create our query and retrieve the information we want. The SQL statement
we want to execute is

SELECT TID, OPERATION FROM TASKS ORDER BY TID

Which will generate a result set containing the Name and Description. In this macro, we will write this data out
to a temporary file and then use the interface functions in QEI Exec to perform the update. To create and
execute the query we write:

rem create temporary file name using expanded logical
 file$ = f_list$("QEIWRK:\.", 2, 0)
 file$ = substr$(file$, 1, length%(file$)-1)
 file$ = file$ + "q" + getsys$(2) + ".tmp"
rem define quote and delimiter characters
 quo$ = """"
 sep$ = ","
rem build query
 tbl$ = "TASKS"
 col$ = "TID, OPERATION"
 sqs$ = "SELECT " + col$ + " FROM " + tbl$ + " ORDER BY TID"

run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
rem execute query
 run "WINMAC:odbc.mac", "RunQuery", qry%, 0, file$, quo$, sep$, status%, msg$
 if status%
 gosub ODBCError:
 endif

We now have a file containing the data we require; the next step is simply to define a suitable interface format
and update the QEI Exec database:

rem define file format
 send "interface"
 send " format custom"
 send " type variable delimited with ’,’ quoted with ’""’"
 send " acti"
 send " actnam character 20"
 send " desc character 50"
 send " return"
 send " return"
rem perform update
 send " update act ’" + file$ + "’"
 send "return"

Finally, we need to tidy up by deleting our temporary file and disconnecting from the database. The ODBC
Library will automatically delete any queries associated with the database so we don’t need to do this explicitly:

rem delete data file
 i% = rm%(file$)
rem disconnect from database and stop
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
 end

Finally, we need to examine the ODBCError routine. For the moment any error will simply cause the macro to
terminate after disconnecting from the database:

ODBCError:
 rem manage fatal errors cleanly
 run "WINMAC:error.mac", "ODBC Error", msg$
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
return

The full text of this macro is shown as Listing 1 at the end of this document.

5. An Alternative Strategy
The macro we have just developed makes use of an intermediate text file to hold the result set. This has the
advantage that the update can then be carried out at high speed using the low level data interfacing functions
within QEI Exec, but may not always be a suitable approach, particularly if the updating of each element in the
QEI Exec database requires a separate query. We can modify our macro to demonstrate an alternative technique
that retrieves data one row at a time, as shown in the pseudocode below:

Build table of AIs in the database
For each AI:
 Get name
 Query via ODBC to get OPERATION for TID with matching name
 Set description to data retrieved

Assuming we have first connected to the database as in the example above, we then need some code that builds
a table of all the AIs and loops through them until no more are left. This is a very standard AMPS construction:

 send "table create name r"
 send "table add ai"
 errset 0
 send "tabf"
 while not error%(2) do
 gosub Update:
 errset 0
 send "tabn"
 enddo

We have also isolated the query processing to a separate subroutine, which makes it easier to read the code. Let
us now look at the subroutine itself, which can be described in pseudocode like this:

Get AI name
Build query to get OPERATION for TID with matching name
Run query
Set AI description to data retrieved
Delete query

Here is the actual AMPS code:

Update:
 send "q /name$ name"
 rem build query
 col$ = "OPERATION"
 tbl$ = "TASKS"
 sqs$ = "SELECT " + col$ + " FROM " + tbl$ + " WHERE TID=’" + name$ + "’"
 qry% = 0
 run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem execute query
 run "WINMAC:odbc.mac", "GetRowData", qry%, 0, desc$, quo$, sep$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem reformat and update
 desc$ = quote$(desc$, "")
 send "desc " + quote$(desc$, "’")
 rem delete query
 run "WINMAC:odbc.mac", "DeleteQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
return

Note that we have assumed there will only be one row in the result set – we are reading the first one returned by
the GetRowData routine and discarding any others. Also note that the row returned only contains one column,
which will be a string quoted with double quotes. These have to be stripped off before the description field is
updated. If the returned row had contained several columns, the parsing and reformatting required might have
involved some quite complex code. Issues relating to data types, parsing and formatting are discussed in more
detail in Section 8.

If the result set had contained several rows, we would have needed to call the GetRowData routine repeatedly
until it returned an empty string to retrieve them all. If we had only needed some of them, the StopRowData
routine can be used to clear the result set so that a subsequent GetRowData call will retrieve the first row of the
result set again.

The full source for this macro is shown as Listing 2 at the end of this document. Some variable declarations are
in slightly different places but the algorithm is the same.

6. Writing Data from QEI Exec
We have so far only used SELECT statements in macros, to extract data from a remote application and update
the QEI Exec database. It is perfectly possible to use INSERT or UPDATE statements to write data from QEI
Exec into the other application, and once again (for the INSERT statement) we have the option of using an
external file to perform a bulk transfer operation.

Looking at the UPDATE statement first, let us consider writing out the description and duration back into the
relational database for each AI in the QEI Exec database. The duration is held in the relational database in a
column of type Integer, while the description is in a Character column.

Looking at the macro in Listing 2, the only change we need to make is to the Update routine, which we will
rename to WriteData. The pseudocode for the routine is:

Get AI name, description and duration
Build query to update DAYS and OPERATION for TID with matching name
Run query
Delete query

The source code looks like this:

WriteData:
 send "q /name$ name"
 send "q /desc$ desc"
 send "q /dura% dura"
 tbl$ = "TASKS"
 col$ = "DAYS, OPERATION"
 rem build query
 sqs$ = "UPDATE " + tbl$ + " SET DAYS=" + dura% + ", OPERATION=" + quote$(desc$, "’")
 sqs$ = sqs$ + " WHERE TID=" + quote$(name$, "’")
 run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem execute query
 run "WINMAC:odbc.mac", "RunQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem delete query
 run "WINMAC:odbc.mac", "DeleteQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
return

Note that you have to specify the list of columns which are being updated, even though you don’t embed the list
in the statement. You can also see that the code has to put single quotes round fields defined as Character data in
the relational database in order to generate syntactically correct statements. The full source code for this macro
is available as Listing 3 at the end of the document.

Now let us consider the INSERT statement, which is used to add new rows to a table. This comes in two forms,
as shown in the examples below:

INSERT INTO TABLE1 (COL1, COL2) VALUES (’VAL1’, VAL2)
INSERT INTO TABLE1 (COL1, COL2) VALUES (?, ?)

The first form specifies the data values explicitly in the statement, and so we could write another macro similar
to the last one which uses this statement to append new rows to the TASKS table. The second form assumes that
the data values to be inserted are held in a text file and have been formatted with the appropriate quote and
delimiter characters. Let’s use this form of the statement to append all AIs with their CODE attribute set to
"NEW" to the TASKS table - the QEI commands for building a table containing only these AIs are:

send "table create name r"
send "table add ai with code eq ’NEW’"

We then need to create the file holding the data. We could do this via the QEI Exec interface, using the TABLE
modifier in the ACTIVITY command to export data only for those AIs in the table, or we can use the AMPS file
management functions to create the file. As we used the interface in the first example, we’ll use AMPS this time
– the pseudocode for the heart of the process is then:

Build table of AIs with CODE = "NEW"
Open file for output
For each AI:
 Get name, description and duration
 Write data to file in correct format
Close file
Build query to update table from file
Run query
Delete file

The full source for this macro is shown as Listing 4 at the end of this document. Look how the macro has to
explicitly format the fields in the data file to match the declared type of each column in the relational database.

7. More on SQL Statements
This section is a roundup of various SQL related topics which have not been covered by the previous Sections.

Column List The list of columns passed to the ODBC routines can be space delimited if desired, although
you cannot then reuse it as part of the statement itself as it would generate a syntax error.
For SELECT statements you can also use the standard shorthand notation "*" to specify all
columns.

Transactions Each query forms an atomic transaction which will only be committed to the database when
it has successfully completed. You can create compound statements by using the InitQuery
and ExtendQuery routines, terminating each statement with the ";" delimiter.

Other Statements It is possible to use the ODBC Library to create and delete tables (if you have the
appropriate permissions) via the CREATE TABLE and DROP TABLE statements. Aliases
(eg SELECT COL1 AS C1) are supported as long as the real columns are specified in the
Column List. The aliases are only of use within the query as the output file contains no
column headers. Subqueries are supported as they do not affect the final set of result
columns. In general, provided that the driver accepts the syntax, SQL statements not
covered explicitly (eg SELECT INTO) will work, but see the next topic for known
restrictions.

Restrictions Aggregate functions such as COUNT(*) and AVG(*) are not yet supported. You cannot yet
define a result set based on columns from a number of tables (eg after a JOIN operation). It
is best to match the case of table and column definitions in your macro to those in the
database as some drivers are case sensitive. It is not a good idea to try to work with tables or
columns whose names contain spaces (supported by some applications) – you need to
rename them or use CREATE VIEW to create a view in which they appear with sensible
names.

8. Data Types, Parsing and Formatting
The biggest problem with using ODBC is matching up the format of the data between QEI Exec and that used
by the other application. As we have seen in the examples so far, the ODBC Library routines will return
character data quoted with a character of your choice, and numeric data will not be quoted. The fields within the
data will be delimited by another character of your choice. Even with these options, the data within the fields
may not correspond to the format expected by QEI Exec and so cannot be transferred via the interface. If this is
the case, then you have to write an AMPS macro that is capable of correctly parsing the lines of data produced
by the query.

In general, text and numeric fields are not a problem – that is reserved for date fields. This is because the exact
representation of the date (and time) are not only application specific but may also depend on the current locale
set in the operating system on your machine. That is to say, not only may it vary depending on whether your
ODBC data source is Access or Oracle, but it may also depend on whether your PC is set up for the UK or the
US. Furthermore, the representation used by date fields retrieved via ODBC may not work when you wish to
insert or update them!

For example, using Access 2000 on a PC set up for the UK locale, a date field is returned as a string
dd/mm/yyyyhhmm, without quote characters. If one tries to use this date format to update an Access database
via it rapidly becomes clear that even though Access accepts UK dates correctly when viewed on screen, it
always assumes dates are in mm/dd/yyyy format (ie US format) when entered using an INSERT or UPDATE.

There are two ways around this: The first (explained in the Access help system) is to make use of an Access-
specific function called DateValue which will accept dates formatted correctly for the current locale. So, to
update a date field in Access via ODBC with a UK formatted date you could create a statement along the lines
of

UPDATE PROJDATA SET START_DATE=DateValue('dd/mm/yyyy') WHERE ACTNAME='TASK01'

This statement will work as required, but will stop working if you the database was ported to (say) SQL Server
as the DateValue function is specific to Access. The second solution gets around this problem by using what is
called an "ODBC escape clause" for dates – the statement would then be written

UPDATE PROJDATA SET START_DATE={d 'yyyy-mm-dd'} WHERE ACTNAME='TASK01'

These escape clauses are guaranteed to work across databases, so the query above will work if the database is
ported from Access.

The ODBC escape clauses for date, time and timestamp data are:

{d ’value’} where value is a date in yyyy-mm-dd format
{t ’value’} where value is a time in hh:mm:ss format
{ts ’value’} where value is a timestamp in yyyy-mm-dd hh:mm:ss[.f…] format

What this means is that you may need to write some date conversion routines to reformat date fields if you are
unable to transfer data via the QEI interface, which offers reasonably sophisticated facilities for reading and
writing dates and times. If this is the case, you may also need some code that can parse a line containing
multiple delimited fields, some of which may be surrounded by quote characters and contain quote characters
themselves (represented as pairs of quote characters). You may find the code in Listing 5 useful – this is a
subroutine which will parse an input line and return a specific field from it. It assumes that fields are quoted
with double quotes, the delimiter character is held in a variable named sep$, and the line of data in row$. If you
call the routine having set the variable fn% to the number of the field you want (first field is field 0) then it will
return the contents of the field in f$.

9. Debugging macros which use ODBC
The most common problem with macros using the ODBC Library is that the syntax of the statement being
passed is incorrect. It is possible to check out exactly what is being passed to the routines in the ODBC Library
by setting the macro into debug mode. This can be done by creating a registry key

HKEY_LOCAL_MACHINE\SOFTWARE\PCF\QEI Exec\<version>\DEBUG

where <version> is the version of QEI Exec in use (currently 2.3 or 3), and creating within it a string value
named ODBC which is set to "1". If you then open the QEI command window (F4) and click once on the
Dismiss button to allow the GUI to operate normally then you will see trace information appear each time any of
the ODBC Library routines are called - this includes the statements themselves. You should also double check
the exact spelling and case of all the table and column names used by the statement – missing or incorrect values
can have devastating consequences on the stability of the macro!

Finally, you can use an interactive SQL query tool (supplied with all relational databases, and many available
for free download off the Internet) to test the exact syntax of statements before embedding them in macro code.
QEI Exec comes with a simple interactive tool in the form of the ODBCDEMO macro, which can can be
associated with a button on a custom toolbar or run from the command line by typing

&run "WINMAC:odbcdemo.mac"

This will bring up the dialog shown below:

You enter the database connection parameters in the left pane, the query in the right (it only supports SELECT
statements) and all being well the results are displayed in the large list box.

Revision 3, May 18th 2001
Richard Jebb

Listing 1

rem establish database connection
 dsn$ = "PROJDATA"
 uid$ = ""
 pwd$ = ""
 hDB% = 0
 qry% = 0
 run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem create temporary file name using expanded logical
 file$ = f_list$("QEIWRK:\.", 2, 0)
 file$ = substr$(file$, 1, length%(file$)-1)
 file$ = file$ + "q" + getsys$(2) + ".tmp"
rem define quote and delimiter characters
 quo$ = """"
 sep$ = ","
rem build query
 tbl$ = "TASKS"
 col$ = "TID, OPERATION"
 sqs$ = "SELECT " + col$ + " FROM " + tbl$ + " ORDER BY TID"
run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
rem execute query
 run "WINMAC:odbc.mac", "RunQuery", qry%, 0, file$, quo$, sep$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem define file format
 send "interface"
 send " format custom"
 send " type variable delimited with ’,’ quoted with ’""’"
 send " acti"
 send " actnam character 20"
 send " desc character 50"
 send " return"
 send " return"
rem perform update
 send " update act ’" + file$ + "’"
 send "return"

rem delete data file
 i% = rm%(file$)
rem disconnect from database and stop
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
 end

ODBCError:
 rem manage fatal errors cleanly
 run "WINMAC:error.mac", "ODBC Error", msg$
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
return

Listing 2

rem establish database connection
 dsn$ = "PROJDATA"
 uid$ = ""
 pwd$ = ""
 hDB% = 0
 qry% = 0
 run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem define key variables
 quo$ = """"
 sep$ = ","
 tbl$ = "TASKS"
 col$ = "OPERATION"

rem iterate over AIs
 send "table create name r"
 send "table add ai"
 errset 0
 send "tabf"
 while not error%(2) do
 gosub Update:
 errset 0
 send "tabn"
 enddo

rem disconnect from database and stop
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
 end

Update:
 send "q /name$ name"
 rem build query
 sqs$ = "SELECT " + col$ + " FROM " + tbl$ + " WHERE TID=’" + name$ + "’"
 run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem execute query
 run "WINMAC:odbc.mac", "GetRowData", qry%, 0, desc$, quo$, sep$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem reformat and update
 desc$ = quote$(desc$, "")
 send "desc " + quote$(desc$, "’")
 rem delete query
 run "WINMAC:odbc.mac", "DeleteQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
return

ODBCError:
 rem manage fatal errors cleanly
 run "WINMAC:error.mac", "ODBC Error", msg$
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
return

Listing 3

rem establish database connection
 dsn$ = "PROJDATA"
 uid$ = ""
 pwd$ = ""
 hDB% = 0
 qry% = 0
 run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem define key variables
 tbl$ = "TASKS"
 col$ = "DAYS, OPERATION"

rem iterate over AIs
 send "table create name r"
 send "table add ai"
 errset 0
 send "tabf"
 while not error%(2) do
 gosub WriteData:
 errset 0
 send "tabn"
 enddo

rem disconnect from database and stop
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
 end

WriteData:
 send "q /name$ name"
 send "q /desc$ desc"
 send "q /dura% dura"
 rem build query
 sqs$ = "UPDATE " + tbl$ + " DAYS=" + dura% + ", OPERATION=" + quote$(desc$, "’")
 sqs$ = sqs$ + " WHERE TID=" + quote$(name$, "’")
 run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem execute query
 run "WINMAC:odbc.mac", "RunQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
 rem delete query
 run "WINMAC:odbc.mac", "DeleteQuery", qry%, 0, "", "", "", status%, msg$
 if status%
 gosub ODBCError:
 endif
return

ODBCError:
 rem manage fatal errors cleanly
 run "WINMAC:error.mac", "ODBC Error", msg$
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
return

Listing 4

rem establish database connection
 dsn$ = "PROJDATA"
 uid$ = ""
 pwd$ = ""
 hDB% = 0
 qry% = 0
 run "WINMAC:odbc.mac", "Connect", 0, hDB%, dsn$, uid$, pwd$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem define quote and delimiter characters
 quo$ = """"
 sep$ = ","
rem get temporary file name & open for writing
 file$ = "QEIWRK:q" + getsys$(2) + ".tmp"
 open o 1 file$

rem iterate over AIs
 send "table create name r"
 send "table add ai with code eq ’NEW’"
 errset 0
 send "tabf"
 while not error%(2) do
 send "q /name$ name"
 send "q /desc$ desc"
 send "q /dura% dura"
 write 1 quote$(name$, quo$) + sep$ + quote$(desc$, quo$) + sep$ + dura%
 errset 0
 send "tabn"
 enddo
 close 1

rem build query
 tbl$ = "TASKS"
 col$ = "TID, OPERATION, DAYS"
 sqs$ = "INSERT INTO " + tbl$ + " (" + col$ + ") VALUES (?, ?, ?)"
 run "WINMAC:odbc.mac", "BuildQuery", qry%, hDB%, tbl$, col$, sqs$, status%, msg$
 if status%
 gosub ODBCError:
 endif
rem execute query
 run "WINMAC:odbc.mac", "RunQuery", qry%, 0, file$, quo$, sep$, status%, msg$
 if status%
 gosub ODBCError:
 endif

rem delete data file
 i% = rm%(file$)
rem disconnect from database and stop
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
 end

ODBCError:
 rem manage fatal errors cleanly
 run "WINMAC:error.mac", "ODBC Error", msg$
 run "WINMAC:odbc.mac", "Disconnect", 0, hDB%, "", "", "", status%, msg$
return

Listing 5

GetField:
 rem extract field number fn% from current line of data row$
 rem into string variable f$, by repeatedly chopping first
 rem field off the line until we reach the one we want. Field
 rem numbering starts at zero.

 rem simple parsing rules:
 rem if first field starts with a quote character
 rem search forward for balancing quote character, allowing
 rem for embedded doubled quote characters in the field
 rem else
 rem field runs up to just before next separator

 n$ = row$
 for ii% = 1 to fn% + 1
 if substr$(n$, 1, 1) = ’"’
 jj% = 2
 while 1 do
 f$ = substr$(n$, jj%, 2)
 if f$ = ’"’
 rem EOL - stop
 break
 elseif f$ = ’""’
 rem advance 2
 jj% = jj% + 2
 elseif grep%(f$, ’[^"][^"]’)
 rem advance 2
 jj% = jj% + 2
 elseif grep%(f$, ’[^"]"’)
 rem advance 1
 jj% = jj% + 1
 elseif grep%(f$, ’"[^"]’)
 rem stop
 break
 else
 rem error..
 print "parse error: " + f$
 break
 endif
 enddo
 f$ = substr$(n$, 1, jj%)
 n$ = substr$(n$, jj%+2, 512)
 else
 if index%(n$, sep$)
 f$ = substr$(n$, 1, index%(n$, sep$)-1)
 n$ = substr$(n$, index%(n$, sep$)+1, 512)
 else
 f$ = n$
 n$ = ""
 endif
 endif
 endfor
return

	Using the ODBC Function Library
	1. Background
	2. ODBC Basics
	3. The ODBC Library
	4. A Simple ODBC Session
	5. An Alternative Strategy
	Build table of AIs in the database

	6. Writing Data from QEI Exec
	Build table of AIs with CODE = "NEW"

	7. More on SQL Statements
	8. Data Types, Parsing and Formatting
	9. Debugging macros which use ODBC
	Listing 1
	Listing 2
	Listing 3
	Listing 4
	Listing 5

